Mars: A planet with a heart?

A message of love appears to be among the latest images from Mars Global Surveyor. This heart-shaped formation is actually a pit formed by collapse within a straight-walled trough known in geological terms as a graben. Graben are formed along fault lines by expansion of the bedrock terrain. This and other Mars Global Surveyor images are available online at http://photojournal.jpl.nasa.gov.

By DIANE AINSWORTH

Vandenberg launch goes smoothly

Circling the Earth every 97 minutes, NASA's new QuikScat ocean-viewing satellite is in the thick of a series of cluster burns that will bring the spacecraft into a uniform, 800-kilometer (500-mile) mapping orbit for the start of the primary mission on July 19.

"The spacecraft is extremely well behaved and the engineering and science teams are performing exceptionally well," said Jim Graf, QuikScat project manager at JPL. "In addition to that good fortune, the telemetry we’re receiving actually looks better than the simulations. We’re ecstatic with the satellite’s performance so far.”

The QuikScat spacecraft with the SeaWinds instrument onboard will measure ocean surface winds, providing both speed and direction for use in oceanographic research, weather forecasting and storm monitoring.

Launched at 7:15 p.m. Pacific Daylight Time on June 19 from California’s Vandenberg Air Force Base, QuikScat completed the first of five planned cluster burns on June 24 to raise the perigee, or closest point to Earth, from an initial staging altitude of about 290 kilometers (180 miles) to about 420 kilometers (260 miles).

Five 10-minute burns using the spacecraft’s 4.4-Newton thrusters were performed beginning at 1 p.m. PDT. The thrusters were fired approximately every three hours throughout the day, on every second orbit around Earth. The commands were generated at the University of Colorado’s Laboratory for Atmospheric and Space Physics, which conducts spacecraft operations under the direction of engineers from Ball Aerospace &

Asteroid hunters get a NEAT source of help

Search for near-Earth objects made easier with electronic camera

By JANE PLATT

JPL astronomers searching for asteroids headed toward Earth are expanding their sky-watching repertoire by adding high-tech, computerized electronic upgrades to the classic 1.2-meter-diameter (48-inch) Oschin telescope atop Palomar Mountain near San Diego.

Right now, the Near Earth Asteroid Tracking (NEAT) system uses a fully automated charge-coupled device (CCD) camera mounted on a 1-meter-diameter (39-inch) telescope atop Mt. Haleakela on Maui, Hawaii. The U.S. Air Force

See NEAT, page 3

See QuikScat, page 6
News Briefs

The futuristic ion propulsion system on JPL’s Deep Space 1 spacecraft is the winner of Discover magazine’s Award for Technological Innovation in the exploration category.

The magazine’s annual awards honor teams whose innovations improve the quality of everyday life. Twenty-seven technologies were selected as finalists. Nine winners, featured in Discover’s July issue, were announced at a recent ceremony in Florida.

The award went to the Solar Electric Propulsion Technology Application Readiness (NSTAR) program team, which developed and delivered Deep Space 1’s ion propulsion system. Accepting on behalf of the team was former NSTAR manager Jack Stocky of JPL.

The ion drive combines a gas found in photo flash units with some of the technologies that make television picture tubes work to deliver a thrust only as powerful as the pressure of a sheet of paper resting on the palm of a hand. The engine can increase a spacecraft’s velocity 10 times more than can a conventional liquid or solid fuel rocket.

Deep Space 1, launched last October, has tested 12 new technologies, including ion propulsion, so that they can be confidently used on science missions of the 21st century.

The NSTAR program began in the early 1990s as a partnership between JPL and NASA’s Glenn Research Center in Cleveland to develop xenon ion engines for deep-space missions. In June 1996, a prototype engine built by the Glenn center began a long-duration test in a vacuum chamber at JPL simulating the conditions of outer space. The test concluded in September 1997 after the engine successfully logged more than 8,000 hours of operation.

Aviation Week & Space Technology magazine recently named a number of JPLers to its Laureates Hall of Fame, which recognizes past winners of its Laurels awards.

Receiving Hall of Fame honors in the “Space” category were John Casani, Richard Cook, Rob Manning, Dr. Jacob Matijevic, Brian Muirhead, William O’Neil and Dr. Edward Stone. Retired employee Anthony Spear also received the honor.

The 1999 Annual Briefing for Administrative Secretaries workshop tape and training materials are available for loan to JPL individuals and groups through the Career Library located in Trailer 1703.

Lyne Pertum, a member of JPL’s Advisory Council for Women (ACW), which is sponsoring the award, said the range of issues is covered, including broadening skills beyond traditional secretarial roles.

The two-hour tape includes segments on the changing role of administrative professionals, strategies for dealing with change, new technologies and the office of the future, the challenge of becoming a supervisor and tips for project management.

ISO certification under way

JPL has been officially notified that the formal processing of its ISO 9001 certificate is under way. The notification was the result of the lead auditor’s acceptance of JPL’s corrective action plans for the non-conformities discovered in the March registration audit. Formal delivery of the actual certificate is estimated to be in July or August.

Auditors from the third-party ISO registrar, DNV Certification, Inc., found 22 non-conformities during the March registration audit, said ISO team manager Dr. Jerry Sutior. The lead auditor’s approval of the corrective action plans initiated the processing of See ISO, page 6
JPL has reorganized the Space and Earth Sciences Programs Directorate to include all elements of the Mars Exploration Program and to better focus the Laboratory’s program-management responsibilities with NASA Headquarters.

The new structure will enable Laboratory program managers to better align and integrate the development of JPL’s projects and meet the requirements of NASA Headquarters sponsors in the Office of Space Science (Code S) and Earth Science (Code Y). The new structure recognizes the key role for managers of the programs assigned to JPL by NASA Headquarters.

Each assigned program area will be represented by an SESPD program manager to interface with NASA Headquarters, as well as offices that address future mission concepts and science, build spacecraft and develop active missions, and conduct mission operations.

SESPD Director Dr. Charles Elachi said the organization’s new structure provides that projects’ formulation and approval phases be conducted by the following offices: Solar System Exploration Office (710), managed by Doug Stetson; Origins and Fundamental Physics Office (720), managed by Dr. Firouz Naderi; Earth Science Office (730), managed by Alfred Zieger; and Mars Exploration Office (740), led by Dr. Daniel McCleese. A portion of the new Program Technology Office (705), which is led by Dr. Leslie Deutsch, will also support the initial two phases of projects’ life cycle. A series of new “implementation offices” has been created within SESPD to carry out the development and operations phases of approved projects. These new offices represent Planetary Flight Projects (750), managed by Gary Parker; Astrophysics Flight Projects (760), managed by Larry Simmons; Earth Science Flight Projects (770), managed by Charles Yamarone; Earth Science Flight Experiments (780), managed by Benn Martin; and Space Science & Microgravity Flight Experiments (790), managed by Michael Devirian; the Mars Sample Return Project (706), managed by Bill O’Neill; and the Mars Surveyor Operations Project (707), managed by Richard Cook.

The New Millennium Program Office, led by Dr. Fuk Li, remains intact, as do other existing program offices for Space Infrared Telescope Facility (SIRTF), managed by Simmons, and Origins, led by Naderi. In addition, the Deep Space Systems Office and Mars Surveyor Program Office have been formed, with former Space Interferometry Mission (SIM) Project Manager Chris Jones named manager of both offices. Other new program offices are the Foreign Space Science Office, managed by John Wellman, and the Earth Observing System (EOS)-J/Earth Process (EP)-J Office, managed by Yamarone. The “J” stands for the JPL-managed portion of NASA’s EOS/EP missions, some of which are managed by the Goddard Space Flight Center in Maryland, and are termed EOS-G/EP-G.

In addition, Gail Robinson, who led Mars’ Business Operations Office, will manage a similar effort for SESPD. The directorate’s Outreach and Education Office, managed by Mark Pine, will also now encompass Mars projects.

Dr. Frank Jordan, who managed Mars program architecture, will now do this for SESPD overall, reporting to Elachi. Dr. Roger Bourke, who formerly handled international partnerships for Mars, will now be on the SESPD technical staff handling international partnerships for SESPD overall, and Nick Thomas will lead institutional partnerships for the directorate.

In addition, Elachi said, the new organization will be aligned with the Develop New Projects (DNP) process and other reengineering efforts. It will all be held together through the Project Leadership Process, where program and project managers are assigned the authority and responsibility to formulate and implement their activities.

For example, to conform with a new NASA project life-cycle procedure, known as NASA Procedures and Guidelines (PGP) 7120.5A, flight-projects development is now structured in formulation, approval, implementation and assessment (review) phases. SESPD offices that oversee the two initial phases of project development will utilize the Mission Systems Design process, while the offices responsible

See SESPD, page 7

NEAT

Continued from page 1 operates the telescope.

NEAT scientists will computerize the pointing system of Palomar’s Oschin telescope, which currently uses a human operator exclusively, and replace photographic plates with a modern electronic camera. The refurbished telescope will enable them to peer deeper into the sky than they can from Haleakula—they’ll see 20 percent farther, and their field of view will be 10 times wider.

“I imagine watching the Super Bowl on your 25-inch TV and then switching to an 80-inch giant-screen TV,” said JPL’s Dr. Steven Pravdo, NEAT project manager and co-investigator. “But in this case, it’s even better than the TV analogy because, with the wider field, we’ll see many more asteroids in each picture—that would be on the ‘sidelines’ of other telescopes.”

The NEAT-Oschin alliance got a test run on June 9 and 10, when Pravdo and two other JPL astronomers, Dr. David Rabinowitz and Jeffrey Schroeder, took the NEAT camera to the Oschin telescope. They obtained the first-ever electronic images from that venerable sky eye.

“This experiment proved that the Oschin telescope will be a powerful tool in our hunt for near-Earth objects,” Pravdo said. “We’ll spruce up this gentle giant and put it to excellent use helping us find asteroids.”

“For 10 years, I’ve dreamed and mapped out plans for adding electronic detectors to this telescope,” said JPL’s Eleanor Helin, principal investigator for NEAT, which has been operating since December 1995. “We’ve been able to study only a fraction of the sky so far, and we’ve been looking for ways to cover the entire sky.”

JPL’s goal is to find all asteroids larger than 1 kilometer (0.6 mile) across within 10 years. “This will achieve one-third of that goal, with the remaining two-thirds filled by the Haleakula camera and other viewing sites,” Helin explained. “The Oschin telescope at Palomar may become the premier finder of near-Earth objects in the world.”

It’s estimated there are 1,000 to 2,000 asteroids larger than 1 kilometer that approach within 48 million kilometers (30 million miles) of Earth. Less than 20 percent have been detected so far. Although the vast majority are harmless and will never pose a threat to Earth, scientists want to keep track of the tiny percentage whose orbits could eventually put them on a collision course with Earth.

The Oschin telescope, operated by Caltech, has served as a world-class telescope since it was built in 1949. Helin used the telescope to discover near-Earth asteroids and comets from the late 1970s to the early 1990s. The instrument is currently completing the second of two sky surveys that serve as a resource to astronomers worldwide. The Oschin telescope has done yeoman’s duty for astronomers through the years, but it has been surpassed in many ways by newer, more advanced telescopes. Nonetheless, it remains the telescope with the largest field of view.

NASA will fund the Oschin upgrade, estimated to cost $300,000 to $500,000, and Caltech will provide the use of the facility and the infrastructure. Within about two years, astrophysicists from Yale University in New Haven, Conn., may provide further high-tech upgrades to maximize the potential of the Palomar telescope.

Images gathered by NEAT using the Oschin telescope, along with general information on NEAT, are available online at http://neat.jpl.nasa.gov. Information on the Palomar Observatory is available online at http://astro.caltech.edu/observatories/palomar/public.

Spiral galaxy M64 as taken with the NEAT camera and Palomar 48” telescope in early June.

NEAT

Continued from page 1 operates the telescope.

NEAT scientists will computerize the pointing system of Palomar’s Oschin telescope, which currently uses a human operator exclusively, and replace photographic plates with a modern electronic camera. The refurbished telescope will enable them to peer deeper into the sky than they can from Haleakula—they’ll see 20 percent farther, and their field of view will be 10 times wider.

“I imagine watching the Super Bowl on your 25-inch TV and then switching to an 80-inch giant-screen TV,” said JPL’s Dr. Steven Pravdo, NEAT project manager and co-investigator. “But in this case, it’s even better than the TV analogy because, with the wider field, we’ll see many more asteroids in each picture—those that would be on the ‘sidelines’ of other telescopes.”

The NEAT-Oschin alliance got a test run on June 9 and 10, when Pravdo and two other JPL astronomers, Dr. David Rabinowitz and Jeffrey Schroeder, took the NEAT camera to the Oschin telescope. They obtained the first-ever electronic images from that venerable sky eye.

“This experiment proved that the Oschin telescope will be a powerful tool in our hunt for near-Earth objects,” Pravdo said. “We’ll spruce up this gentle giant and put it to excellent use helping us find asteroids.”

“For 10 years, I’ve dreamed and mapped out plans for adding electronic detectors to this telescope,” said JPL’s Eleanor Helin, principal investigator for NEAT, which has been operating since December 1995. “We’ve been able to study only a fraction of the sky so far, and we’ve been looking for ways to cover the entire sky.”

JPL’s goal is to find all asteroids larger than 1 kilometer (0.6 mile) across within 10 years. “This will achieve one-third of that goal, with the remaining two-thirds filled by the Haleakula camera and other viewing sites,” Helin explained. “The Oschin telescope at Palomar may become the premier finder of near-Earth objects in the world.”

It’s estimated there are 1,000 to 2,000 asteroids larger than 1 kilometer that approach within 48 million kilometers (30 million miles) of Earth. Less than 20 percent have been detected so far. Although the vast majority are harmless and will never pose a threat to Earth, scientists want to keep track of the tiny percentage whose orbits could eventually put them on a collision course with Earth.

The Oschin telescope, operated by Caltech, has served as a world-class telescope since it was built in 1949. Helin used the telescope to discover near-Earth asteroids and comets from the late 1970s to the early 1990s. The instrument is currently completing the second of two sky surveys that serve as a resource to astronomers worldwide. The Oschin telescope has done yeoman’s duty for astronomers through the years, but it has been surpassed in many ways by newer, more advanced telescopes. Nonetheless, it remains the telescope with the largest field of view.

NASA will fund the Oschin upgrade, estimated to cost $300,000 to $500,000, and Caltech will provide the use of the facility and the infrastructure. Within about two years, astrophysicists from Yale University in New Haven, Conn., may provide further high-tech upgrades to maximize the potential of the Palomar telescope.

Images gathered by NEAT using the Oschin telescope, along with general information on NEAT, are available online at http://neat.jpl.nasa.gov. Information on the Palomar Observatory is available online at http://astro.caltech.edu/observatories/palomar/public.
Upward Feedback returns

Upward Feedback, a survey tool used at JPL to measure employees’ input about management effectiveness, is returning for a second round.

First employed in 1996 following an employee survey indicating that managers needed to develop better interpersonal and leadership skills and stay in touch with the needs of workgroups, Upward Feedback is now in the first of its three sessions this summer.

Participation in this second round of Upward Feedback is voluntary for supervisors, who can still sign up for the current session as late as June 28, and as late as July 12 for the third session.

The sessions take place over a five-week period and include an anonymous online survey for workgroup members, a one-on-one coaching session between a manager and a facilitator, and a facilitated workgroup discussion.

The workgroup discussions generate specific action plans, which the manager reviews with his or her boss. Managers and workgroup members will periodically assess the action plans and their effectiveness.

Upward Feedback survey questions are the same as those used in the first round, with the addition of a few new ones. They include questions that assess managers’ behavior in eight categories: basic communication, direction and feedback, empowerment, investment in people, resource management, teaming, performance focus, and leadership.

Second-round data will identify themes consistent with the first round, which was completed in February 1998. “We are looking forward to comparing data from rounds 1 and 2, which will be critical in validating needed areas of improvement.” said Rick Hann of the Human Resources Directorate.

In the initial round, employees found the most highly rated manager strengths to be “practices trustworthiness and integrity” (88 percent responding favorably) and “lets me do my job without interfering” (87 percent). Areas cited as needing the most improvement were “gives me appropriate career guidance” and “gives me clear, effective and timely feedback on my performance, with 45 percent and 54 percent favorable responses, respectively.

Upward Feedback results are considered to be effective if 80 percent of members in a workgroup agree or strongly agree that the desired behavior is practiced by their manager.

“Upward Feedback is a process in which employees provide concrete actions to make things better,” Hann said. “Employee participation is the key. People should take advantage of this opportunity to think about how their workgroup is managed and provide constructive suggestions to improve the things that are most needed.”

See Feedback, page 7

Space Flight Awareness honorees feted

Six JPL employees joined approximately 250 others from NASA centers, contractor companies and the U.S. Air Force in receiving NASA’s Space Flight Awareness (SFA) launch honoree award last month, the highest tribute paid by NASA to government and industry workers.

Honorees were given a VIP tour of the Kennedy Space Center, attended a reception in their honor with approximately 20 astronauts, and viewed the dawn launch of STS-96 on May 27.

The honorees were presented their awards by JPL distinguished guests Joe Charles, manager of Section 665; Ron Ploszaj, deputy director of the Engineering and Science Directorate; astronaut Willie McCool and astronaut candidate Leland Melvin.

For information about the JPL SFA program and STS-96 mission, go online to http://epic/sec614/reward/sfa.htm.

Passings

Lane Prior, 89, a retired safety engineer in Section 611, died of cardiac arrest and respiratory illness May 9 at a nursing home.

Prior joined JPL in 1962 and retired in 1977. He is survived by his son William.

Services were held at Rose Hills Memorial Park in Whittier.

Robert Topping, 89, a retired administrative aide in Section 664, died of heart failure May 14 at his Monrovia home.

Topping worked at JPL from 1949–77. He is survived by his wife, Ruth.

Services were held at Live Oak Cemetery in Monrovia.

Dorothy Johann, 82, a retired senior department clerk in Section 356, died of an aneurysm May 28.

Johann joined JPL in 1966 and retired in 1979. She is survived by her husband, William; one son, two grandchildren and two great grandchildren. Services were private.

Marshall Humphrey, 77, a retired senior engineer in Section 350, died of a heart attack June 12.

Humphrey worked at the Lab from 1968–90. He is survived by daughters Mindy Ann Humphrey, Pamela Humphrey-Zugor, Wendy Humphrey and Sherry Grant.

Services were held at Fort Rosecrans National Cemetery in San Diego.
The major issue is work, pure and simple. Where is [it] coming from? How does it get here, and who is responsible for making decisions about what kinds of work is accepted? How can we get it all done, retain our sanity and maintain lives of our own?

People need some light at the end of the tunnel. If people saw that the changes going on were taking root, I think the entire feeling of the place would be different. . . . Once things kick in, I think there will be a huge sigh of relief.

An independent source for help

By MARK WHALEN

Lewis Redding is JPL’s ombudsman, the first person to serve in such a role in the Laboratory’s history. Since August 1996 Redding has served as a neutral party to help seek solutions to a wide variety of employee concerns. His role is to be an independent, objective, confidential, non-management voice to which employees can turn for help. Redding formerly held the same job at the Massachusetts Institute of Technology’s Lincoln Laboratory, and prior to joining JPL he held the position of ombudsman at Northeastern University in Boston.

In one of an ongoing series of articles about change at JPL, Redding shares his observations about his job and JPL.

Question: How do you get to be an ombud? What kinds of skills are required?

Answer: Anything that has elements of mediation, negotiation, etc. could be a very decent background for the job, as would counseling. A lot of people think ombuds are psychologists, but we are not—that’s not part of the role. Most organizations hire [the position] internally. They look for someone who is winding down his or her career, who has a reputation for lots of honesty and integrity, and who doesn’t have a lot of internal baggage. Organizations may ask this type of person to become an ombud because they know the organization and the culture, and that’s a huge advantage. On the other hand, by hiring from outside the organization, the advantage is that the person coming in doesn’t have any baggage.

Has it been an advantage or disadvantage for you to come to JPL from the outside?

I think it’s made sense for me to come here from the outside. I would probably be less likely to say that had I not also worked for Lincoln Laboratory. If I had come here out of say, banking, I think the culture would have really put me into a problem for me. I was aware of JPL and what it did, and it was fascinating to me. Lincoln Laboratory is a federally funded research and development center, as is JPL, so I thought there was compatibility in terms of what the place might be like.

Are you an advocate for the employees?

Advocacy is not appropriate for an ombud, generally speaking. Occasionally, advocacy will fall out of an issue, but an ombud is not in a position to advocate either for an employee or for the company. Usually, the position’s only advocacy should be for fair process. In terms of issues that come to us, we’re supposed to remain neutral and impartial.

Why did JPL create the position of ombudsman?

My understanding was that the decision to hire an ombuds was management’s response to employees’ concerns. Employees had expressed concerns that there was no place they could go on Lab that was neutral.

In the three years you’ve been at JPL, have you noticed changes in what issues and areas of concern are most important to employees?

There’s often an ebb and flow to how and when issues come forward. When I first got here, the biggest concerns were outsourcing/downsizing and the new compensation plan. But employee issues generally revolve around perceived conflict with someone else, usually with an individual—sometimes with a supervisor. People might say they have been treated unfairly, for one reason or another, and want to know what they can do about it.

What do you tell a person who comes to you for advice about a conflict?

I normally tell employees who have an issue or concern that they ask the person they trust and respect most to provide assistance. So it may not be me. But I also ask employees, “Would you be comfortable talking to or have you talked to your supervisor about this issue? If you haven’t or don’t feel comfortable with that, why not?” An employee simply may not know the best way to approach the supervisor for a discussion. It could be, say, “Should I have a formal meeting, or should I try catching them when they’re getting coffee?” If the employee finally decides that he or she can’t talk to their supervisor about the issue, I will ask the employee if it makes sense for me to talk to their supervisor about it. We will then talk about the pros and cons about anything that gets done.

What other concerns do you see expressed?

Right now, and I think it’s been true for about a year and a half now, the major issue is work, pure and simple. Where is [the work] coming from? How does it get here, and who is responsible for making decisions about what kinds of work is accepted? How can we get it all done? How can we get it all done, retain our sanity and maintain lives of our own? When issues are going on, I think the culture would have really put me into a place that would be different. . . . Once things kick in, I think there will be a huge sigh of relief.

Hasn’t JPL always functioned with this kind of stress?

Yes. For many people working on smaller and multiple projects, and switching hats often, it is difficult. I think the scariest thing for the Laboratory is the possibility of mission failure. Those kinds of issues add a peculiar kind of stress. And I think people here are very much afraid of appearing to be whiners, complainers, or give an impression that they can’t do the job. This makes it very difficult for people to come forward and say, “I need a day off.” No one wants to appear to be shirking their tasks and responsibilities and no one wants to be seen as
JPL staff enjoy a free lunch and a spot of shade June 22 in celebration of the June 19 launch of QuikScat, culminating the Laboratory’s six spacecraft launches over the last nine months. Starting last Oct. 24, JPL also launched Deep Space 1, Mars Climate Orbiter, Mars Polar Lander, Stardust and the Wide-Field Infrared Explorer.

Once the spacecraft has completed the cluster burns, the SeaWinds scatterometer will begin collecting data from 90 percent of the Earth’s surface each day. Although calibration and validation of the measurements by the science team will continue for several months, QuikScat will formally begin its two-year primary mission of mapping ocean wind speed and direction on July 19.

QuikScat is part of NASA’s Earth Sciences Enterprise, a long-term research and technology program to examine Earth’s land, oceans, atmosphere, ice and life as a total integrated system. JPL built the scatterometer and has provided ground science processing systems. NASA’s Goddard Space Flight Center in Maryland managed development of the satellite.

Retirees

The following employees retired in June:

- William Frey, 40 years, Section 834; Lawrence Lim, 35 years, Section 174; George Lutes, 35 years, Section 335; Fred Shair, 32 years, Section 109; David Lame, 30 years, Section 310; James McDonnell, 29 years, Section 312; Roger Hoon, 26 years, Section 223; Marguerite Gaudet, 21 years, Section 661; James Kesterson, 21 years, Section 390; James Bradley, 20 years, Section 385; Riley Strickland, 19 years, Section 333; Carole Bradley, 16 years, Section 623; Stephen Huffman, 13 years, Section 760.
We’re doing things that no one else is supposed to be able to do—all of that says the way we relate to each other in the workplace becomes more and more important. We ignore that at our peril. I don’t think we ignore that now, but we must get better at it.

So how do we address getting people to better work together? Solutions are not necessarily easy to come by. Solutions take everybody. It would be curious to me if there were a way where employees were involved in some of the solutions—at least in providing ideas to find solutions for some of the work-issue problems. Clearly, employees can’t determine what work comes in here. But maybe there’s a way for employees to have input into rescheduling work, or how people get work done. It seems to me that as many minds as we can get to working on some of this stuff, the better. A good example of this is the Future Program Council Implementation Subcommittee, which is working to achieve a balance between JPL’s workload and the resources available to get it done.

How do you assure people that if they bring an issue forward to you that they will not be risking their job, their good standing, their reputation?

That’s a good question. The Laboratory has a policy against retaliation, and I make that clear from the beginning. Also, if the employee is really concerned about termination, and if they feel comfortable discussing it, I refer them to Employee Relations, which owns that process.

I do try to get employees back to their supervisor, assuming the supervisor is not a player in the situation. This way, the supervisor won’t be upset that the employee appears to have gone around the supervisor to settle the issue, and won’t wonder why the employee didn’t talk to them first. In fact, some supervisors will resent the fact that employees didn’t come to them for help. I want to get them out of a possible political problem. And I won’t meet with the supervisor unless the employee says it’s OK. But again, most employees want to solve it on their own. Other options include talking to Ethics or the Employee Assistance Program.

Are you always able to hear sides of an issue?

I try to get employees to tell me whether or not they are the only one who knows about or is affected by their issue or concern. I have an obligation to try to hear as many sides of an issue as possible. However, employees often will not allow me to hear another side of an issue, and that can tie my hands. Sometimes I will have only the employee’s story. And I will tell them that since I don’t know the other side, while I can still provide advice and counsel, it will not be quite the same because there may be some missing pieces and what is missing may be exactly what is needed to help shape a solution to the specific situation.

How do you deal with issues that—from your observations—are prevalent and widespread on Lab?

How do you spread the word on institutional issues that may come to your office?

I tend not to hear good stuff, so I have to be careful when I start extrapolating things for the whole Laboratory. But on a semi-monthly basis I prepare a written document that goes to Larry Dumas, the deputy director, who shares with the Executive Council. It basically shows my understanding of generic issues that I’m hearing from employees. No names or any kind of identifying information is attached.

How many people are you seeing?

I only keep track of the number of people who see me if it is for an hour or more, and that’s about 150 per year. I know of organizations larger than JPL where the ombudsperson is seeing no more employees than I am. But my gut tells me that for a population this size, perhaps I should be seeing more people.

How does someone reach you?

I can be reached on Lab at ext. 4-7045, or (800) 565-5058. The fax number is 3-3960.

Letters

DRESSER/CHANGER for baby, white, $50; baby car seat/carrier $25; high chair $50; misc. baby items & toys at reasonable prices; BREAKFAST TABLE & 4 chairs, $150; SECTIONAL COUCH, beige, almost new, $350; COMPUTER DESK & CHAIR, $105, 248-8853.

EXERCISE EQUIPMENT: electronic treadmill, variable speed & incline, heart rate monitor, $50; stair stepper, $25; swing-walker, $25; all in good condition; you haul, Valencia area, 661-297-0219.

EXERCISE EQUIPMENT, Tunturi stationary bike, gd. cond., $25, 352-5437.

FOOTBALL TOOLKIT, Randy Moss ‘98 rookie of year’ autographed 8 x 10 photo, cert of authenticity, $75; BASEBALL & FOOTBALL CARDS, unopened boxes, 92-99, $30-$100; BEANIE BABIES, McDonald’s, all 12 in original bags, 626/914-2062.

DINING ROOM FURNITURE: cherry wood server from Ethan Allen (Georgian Court Collection), dimensions 40” x 21” x 34”, exc. condition, $850/obo; unrelated 5-piece dinette set (table dimensions 48” x 36” x 29”), $75, 626/577-8107.

DINING ROOM FURNITURE: cherry wood server from Ethan Allen (Georgian Court Collection), dimensions 40” x 21” x 34”, exc. condition, $850/obo; unrelated 5-piece dinette set (table dimensions 48” x 36” x 29”), $75, 626/577-8107.

DINING ROOM SET, Henredon 74” x 46” pedestal table w/two incline, heart rate monitor, $50; stair stepper, $25; swing-walker, $25; all in good condition; you haul, Valencia area, 661-297-0219.

EXERCISE EQUIPMENT, Tunturi stationary bike, gd. cond., $25, 352-5437.

Football toolkit, Randy Moss (‘98 rookie of year) autographed 8 x 10 photo, certificate of authenticity, $75; baseball & football cards, unopened boxes, 92-99, $30-$100; beanie babies, McDonald’s, all 12 in original bags, 626/914-2062.

Garage Sale, 4723 Alminar Ave., La Canada; lots of draftsman and elect test equip., power tools, furniture, mattresses, Continued on page 8

Continued from page 5

a failure. I think people need some light at the end of the tunnel. If people saw that the changes going on were taking root, I think the entire feeling of the place would be different. Once things kick in and start to make things better, I think there will be a huge sigh of relief. There will also be a sigh of relief because there are close to meeting the downsizing and outsourcing goals, which may bring a bit of a respite.

But is JPL that different from other work environments? Isn’t all of NASA working under “faster, better, cheaper?”

One of the unique things about JPL is that a good number of people here haven’t worked anywhere else. Some people tend to have a somewhat insulated view about JPL, and they may automatically make an assumption that JPL is worse on a given issue than a company in the outside world might be. And it’s not true. For some people, there’s no accurate way to compare JPL to the outside world. JPL is not a perfect organization, but it’s far superior to a heck of a lot of organizations in the outside world. I tend to think a lot of employees may be harder on JPL than JPL deserves simply because so many employees don’t have an outside measure.

What other challenges do you see for the Lab from your perspective?

The Laboratory gets the technical stuff done. We do meet those challenges. But my perception is that the difficult things for the Laboratory are the people things. JPL talks about teaming, partnering, information sharing—things that are perhaps more people-intensive than they used to be, and we’ve got to get better at that.
Vehicles

SUNRISE, Magnavox 14" color for Macintosh, great resolution, $400/obo. 626/303-5595.

MODEM, Apple Geoport adapter fax/modem, model M1694 and Sun. 952-1538.

TENNIS RACKET, Prince Magnesium Pro, never been used, $400/obo. 626/303-5595.

STOVE/OVEN, antique, O'Keefe & Merritt, 4 burner, grill, 2-door casters with 2 add'l black shelves and a smoked glass door, $1,260. 626/305-1061.

PRINTER, Xerox Diablo 630 daisywheel with print wheels/ribbon, $1,450. 626/305-1061.

PRINTER, color, Lexmark 1 100 w/orig. ink cartridge over half

PRINTER, color, Lexmark 1 100 w/orig. ink cartridge over half

PRINTER, color, Lexmark 1 100 w/orig. ink cartridge over half

REAL ESTATE

BIG BEAR, new cabin 2 blocks from lake, 2 bd., 2 ba., mud/laun.

PASADENA, room in 3 bd. apt. to share with two others; pool, parking, a/c, washer/dryer; $460 + 1.3 utilities. 626/564-1078.

SYLMAR townhouse/condo, centrally located, 2 bd., 1 1/2 ba., 2-car garage, central a/c, all furnishings, $545/week. 626/797-9021.

VACATION RENTALS

BIG BEAR, 7 mi/loops; full/kitch.; 1 bd., 1 1/2 ba., sleeps 6; rea.

LAKE TAHOE, North Shore, 2 bd., 2-1/2 ba., sleeps 6-7, private sandy beach, great location, all amenities, pool, walk to golf course, fishing, kayaking, river rafting, bike trails, 2 miles/casinos, $625 per wk. 626/355-3868, Rosemary or Ed.

BIG BEAR LAKEFRONT, 2 bd., 2 1/2 ba., sleeps 6; fully equipped; kitch., mfr. washer/dryer, d/c; close to hiking, shops, wireless; $1,095/week. 249-8524.

SOUTHERN CA, 2 bd., 1 ba., furnished, fully equipped, all breakfast supplies provided; $1,695/week. 249-8524.